Linear Algebra
[KOMS119602] - 2022/2023

9.1 - Vectors in Space

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 9 (November 2022)

Learning objectives

After this lecture, you should be able to:

1. explain the concept of Euclidean space (n-space);
2. perform operations on vectors such as addition and multiplication;
3. explain the geometric interpretation of linear combination of vectors;
4. explain the concept of linear independence of vectors;
5. implement properties of vectors operations in \mathbb{R}^{n} to problem solving.

Part 1: Vector Space

What is an n-space?

Recall our previous discussion...

- An ordered n-tuple is a sequence of real numbers: $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ (or, can be seen as a vector).
- An n-space is a set of all n-tuples of real numbers. Usually denoted as \mathbb{R}^{n}. For $n=1, \mathbb{R}^{1} \equiv \mathbb{R}$.
- This space is where vectors are defined
- The n-space \mathbb{R}^{n} is also called Euclidean space.

Example:

Vector in \mathbb{R}^{2}
Vector in \mathbb{R}^{3}

$4 / 26$
(C) Dewi Sint Fari/CS Undiksha

Vectors in n-space

- An n-tuple in \mathbb{R}^{n}, e.g. $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right)$ is called a point or a vector.
- The numbers u_{i} are called coordinates, components, entries, or elements of u.
- When referring to \mathbb{R}^{n}, an element of \mathbb{R} is called scalar.
- The vector $(0,0, \ldots, 0)$ is called zero vector.
- Example: the zero vector in \mathbb{R}^{2} is $(0,0)$, and the zero vector in \mathbb{R}^{3} is $(0,0,0)$
- Vectors \mathbf{u} and \mathbf{v} are equal if they have the same number of components, and the corresponding components are equal.

Row vectors and column vectors

A vector in \mathbb{R}^{n} can be written horizontally (this is called row vector) or vertically (called column vector).

$$
u=\left[a_{1}, a_{2}, \ldots, a_{n}\right] \quad u=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{3}
\end{array}\right]
$$

Note: any operation defined for row vectors is defined analogously for column vectors. From now on, vectors are often written as row vectors.

Part 2: Vectors Operations

Vectors addition and scalar multiplication

Let u and v be vectors in \mathbb{R}^{n}, say:

$$
u=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad \text { and } \quad v=\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

The sum $u+v$ is defined as:

$$
u+v=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)
$$

If $k \in \mathbb{R}$, the scalar product or product $k u$ is defined as:

$$
k u=k\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(k a_{1}, k a_{2}, \ldots, k a_{n}\right)
$$

The negative and subtraction (the difference of u and v) are defined as:

$$
-u=(-1) u \quad \text { and } \quad u-v=u+(-v)
$$

Note: $u+v, k u,-u, u-v$ are also vectors in \mathbb{R}^{n}.

The zero vector and one vector

The zero vector $0=(0,0, \ldots, 0)$ and the one vector $1=(1,1, \ldots, 1)$ in \mathbb{R}^{n} are similar to the scalar 0 and 1 in \mathbb{R}.

- For a vector $u=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, then:

$$
\begin{aligned}
u+0 & =\left(a_{1}+0, a_{2}+0, \ldots, a_{n}+0\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)=u \\
1 u & =1\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)=u
\end{aligned}
$$

Part 3: Linear Combination of Vectors

Linear combination

Given vectors $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{R}^{n}$ and scalars $k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{R}$, we can form a new vector:

$$
v=k_{1} u_{1}+k_{2} u_{2}+\cdots+k_{m} u_{m}
$$

This vector is called a linear combination of the vectors $u_{1}, u_{2}, \ldots, u_{m}$.

How do you explain linear combination of vectors geometrically?

Example

1. Let $u=(2,4,-5)$ and $v=(1,-6,9)$, then:

$$
\begin{aligned}
u+v & =(2+1,4+(-6),-5+9)=(3,-2,4) \\
4 u & =(8,14,-20) \\
-v & =(-1,6,-9) \\
3 u-2 v & =(6,12,-15)+(-2,12,-18)
\end{aligned}
$$

2. Let $u=\left[\begin{array}{c}2 \\ 3 \\ -4\end{array}\right]$ and $v=\left[\begin{array}{c}3 \\ -1 \\ -2\end{array}\right]$, then:

$$
2 u-3 v=\left[\begin{array}{c}
4 \\
6 \\
-8
\end{array}\right]+\left[\begin{array}{c}
-9 \\
3 \\
6
\end{array}\right]=\left[\begin{array}{c}
-5 \\
9 \\
-2
\end{array}\right]
$$

Geometric interpretation of linear combination

How would you interpret linear combination of vectors geometrically?

See it as a combination of scaling and moving vectors in a space
Example
Given a vector $\vec{u}=[3 / 4]$ and $\vec{v}=[-2 / 1]$. How do you explain $2 \vec{u}+3 \vec{v}$?

Geometric interpretation of linear combination

[1 0] and [0 1] are "special vectors" in the 2D-space. Can you guess why?

Every vector u in \mathbb{R}^{2} can be represented as a linear combination of vectors $x_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $x_{2}=[01]$, i.e.:

For every $u \in \mathbb{R}^{2}$, there exist a constant $c_{1}, c_{2} \in \mathbb{R}$ such that $u=c_{1} x_{1}+c_{2} x_{2}$.

In particular, if $u=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$ then $u=a_{1} x_{1}+a_{2} x_{2}$.

Example
$\left[\begin{array}{ll}4 & 3\end{array}\right]=4\left[\begin{array}{ll}1 & 0\end{array}\right]+3\left[\begin{array}{ll}0 & 1\end{array}\right]$

- What are the special vectors in the 3D-space?
- What about the nD-space?

Geometric interpretation of linear combination

The set
$\left\{x_{i}, i \in\{1,2, \ldots, n\} \mid x_{i}=(0, \ldots, 0,1,0, \ldots, 0) 1\right.$ is at the i-th position is the set of special vectors in the n-space. (In the previous slide, we denote them by $e_{1}, e_{2}, \ldots, e_{n}$.)

So any vector $u=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ can be written as:

$$
u=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

We say that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ spans \mathbb{R}^{n}.
A more formal definition will be discussed later.

Part 4: Linear Independence of Vectors

Linear independence

Given a system:

$$
\left[\begin{array}{ccc}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The system can be written as a vector equation:

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The vector equation has the trivial solution:

$$
x_{1}=0, x_{2}=0, x_{3}=0
$$

Is there any other solution?

Linear independence

Definition (Linear independence)

A set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\} \in \mathbb{R}^{n}$ is said to be linearly independent if the vector equation:

$$
x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{p} \mathbf{v}_{p}=\mathbf{0}
$$

has only the trivial solution.

Definition

The set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{p}\right\} \in \mathbb{R}^{n}$ is said to be linearly dependent if there exists $c_{1}, c_{2}, \ldots, c_{n} \in \mathbb{R}^{n}$ which are not all 0 , s.t.

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{p} \mathbf{v}_{p}=\mathbf{0}
$$

Simply saying, two vectors are linearly independent if none of them can be expressed as a linear combination of the others.

Example of linear independence of vectors

Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 9\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-3 \\ 9 \\ 3\end{array}\right]$.

- Determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.

Solution:

Example of linear independence of vectors

Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 9\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-3 \\ 9 \\ 3\end{array}\right]$.

- Determine if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent.

Solution:

Solve the system:

$$
x_{1}\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+x_{2}\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We can perform elementary row operations on the augmented matrix:

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
3 & 5 & 9 & 0 \\
5 & 9 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & -1 & 18 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & -3 & 0 \\
0 & -1 & 18 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

What can you conclude?

Example of linear dependence of vectors

Given $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 5 \\ 9\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-3 \\ 9 \\ 3\end{array}\right]$. We have relation:

$$
-33\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+18\left[\begin{array}{l}
2 \\
5 \\
9
\end{array}\right]+1\left[\begin{array}{c}
-3 \\
9 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

or equivalently,

$$
\left[\begin{array}{ccc}
1 & 2 & -3 \\
3 & 5 & 9 \\
5 & 9 & 3
\end{array}\right]\left[\begin{array}{c}
-33 \\
18 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A \mathbf{x}=\mathbf{0}$.

Exercise 1

Determine the linear independence of the following set of vectors:

1. $\left\{\mathbf{v}_{1}\right\}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$
2. $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}4 \\ 2\end{array}\right]\right\}$
3. $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$

Solution:

Conclusion

How to check that a set containing one vector is linearly independent?

How to check that a set containing two vectors is linearly independent?

Conclusion

How to check that a set containing one vector is linearly independent?

Answer: $\left\{\mathbf{v}_{1}\right\}$ is linearly independent when $\mathbf{v}_{1} \neq \mathbf{0}$
How to check that a set containing two vectors is linearly independent?

Answer:

- $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly dependent if at least one vector is a multiple of the other;
- $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent if and only if neither of the vectors is a multiple of the other.

Part 5: Numerical

 Computations of Vectors in \mathbb{R}^{n}
Properties of vectors under operations

Theorem

For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{n}$ and any scalars $k, k^{\prime} \in \mathbb{R}$,

1. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
2. $\mathbf{u}+0=\mathbf{u}$
3. $\mathbf{u}+(-\mathbf{u})=0$
4. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
5. $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$
6. $\left(k+k^{\prime}\right) \mathbf{u}=k \mathbf{u}+k^{\prime} \mathbf{u}$
7. $\left(k k^{\prime}\right) \mathbf{u}=k\left(k^{\prime} \mathbf{u}\right)$
8. $\mathbf{1 u}=\mathbf{u}$
(associative)
(identity elt w.r.t. addition)
(two opposite vectors)
(commutative)
(distributive w.r.t. scalar mult.)
(identity elt w.r.t. multiplication)

Note: Suppose \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and $\mathbf{u}=k \mathbf{v}$ for some $k \in \mathbb{R}$. Then \mathbf{u} is called the multiple of \mathbf{v}. If $k>0$, then \mathbf{u} and \mathbf{v} have the same direction, and if $k<0$, then they are in opposite direction.

Exercise

to be continued...

(C) Dewi Sintiari/CS Undiksha

