Linear Algebra [KOMS119602] - 2022/2023

9.1 - Vectors in Space

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 9 (November 2022)

Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of Euclidean space (*n*-space);
- perform operations on vectors such as addition and multiplication;
- explain the geometric interpretation of linear combination of vectors;
- 4. explain the concept of linear independence of vectors;
- 5. implement properties of vectors operations in \mathbb{R}^n to problem solving.

Part 1: Vector Space

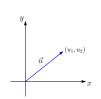
What is an *n*-space?

Recall our previous discussion...

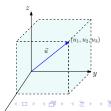
- An ordered *n*-tuple is a sequence of *real numbers*: $(a_1, a_2, ..., a_n)$ (or, can be seen as a vector).
- An *n*-space is a set of all *n*-tuples of real numbers. Usually denoted as ℝⁿ. For n = 1, ℝ¹ ≡ ℝ.
 - This space is where vectors are defined
- The *n*-space \mathbb{R}^n is also called Euclidean space.

Example:

Vector in \mathbb{R}^2



Vector in \mathbb{R}^3



Vectors in *n*-space

- An *n*-tuple in \mathbb{R}^n , e.g. $u = (u_1, u_2, \dots, u_n)$ is called a point or a vector.
- The numbers u_i are called coordinates, components, entries, or elements of u.
- When referring to \mathbb{R}^n , an element of \mathbb{R} is called scalar.
- The vector $(0,0,\ldots,0)$ is called zero vector.
 - Example: the zero vector in \mathbb{R}^2 is (0,0), and the zero vector in \mathbb{R}^3 is (0,0,0)
- Vectors u and v are equal if they have the same number of components, and the corresponding components are equal.

Row vectors and column vectors

A vector in \mathbb{R}^n can be written horizontally (this is called row vector) or vertically (called column vector).

$$u = [a_1, a_2, \dots, a_n]$$

$$u = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_3 \end{bmatrix}$$

Note: any operation defined for row vectors is defined analogously for column vectors. From now on, vectors are often written as row vectors.

Part 2: Vectors Operations

Vectors addition and scalar multiplication

Let u and v be vectors in \mathbb{R}^n , say:

$$u = (a_1, a_2, \dots, a_n)$$
 and $v = (b_1, b_2, \dots, b_n)$

The sum u + v is defined as:

$$u + v = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

If $k \in \mathbb{R}$, the scalar product or product ku is defined as:

$$ku = k(a_1, a_2, ..., a_n) = (ka_1, ka_2, ..., ka_n)$$

The negative and subtraction (the difference of u and v) are defined as:

$$-u = (-1)u$$
 and $u - v = u + (-v)$

Note: u + v, ku, -u, u - v are also vectors in \mathbb{R}^n .

The zero vector and one vector

The zero vector 0 = (0, 0, ..., 0) and the one vector 1 = (1, 1, ..., 1) in \mathbb{R}^n are similar to the scalar 0 and 1 in \mathbb{R} .

• For a vector $u = (a_1, a_2, \ldots, a_n)$, then:

$$u + 0 = (a_1 + 0, a_2 + 0, \dots, a_n + 0) = (a_1, a_2, \dots, a_n) = u$$

 $1u = 1(a_1, a_2, \dots, a_n) = (a_1, a_2, \dots, a_n) = u$

Part 3: Linear Combination of Vectors

Linear combination

Given vectors $u_1, u_2, \ldots, u_n \in \mathbb{R}^n$ and scalars $k_1, k_2, \ldots, k_n \in \mathbb{R}$, we can form a new vector:

$$v = k_1 u_1 + k_2 u_2 + \cdots + k_m u_m$$

This vector is called a linear combination of the vectors u_1, u_2, \ldots, u_m .

How do you explain linear combination of vectors geometrically?

Example

1. Let
$$u = (2, 4, -5)$$
 and $v = (1, -6, 9)$, then:

$$u + v = (2 + 1, 4 + (-6), -5 + 9) = (3, -2, 4)$$

$$4u = (8, 14, -20)$$

$$-v = (-1, 6, -9)$$

$$3u - 2v = (6, 12, -15) + (-2, 12, -18)$$

2. Let
$$u = \begin{bmatrix} 2 \\ 3 \\ -4 \end{bmatrix}$$
 and $v = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$, then:

$$2u - 3v = \begin{bmatrix} 4 \\ 6 \\ -8 \end{bmatrix} + \begin{bmatrix} -9 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} -5 \\ 9 \\ -2 \end{bmatrix}$$

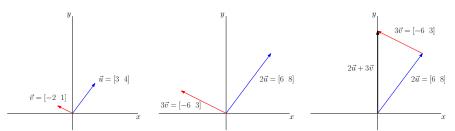
Geometric interpretation of linear combination

How would you interpret linear combination of vectors geometrically?

See it as a combination of scaling and moving vectors in a space

Example

Given a vector $\vec{u} = [3/4]$ and $\vec{v} = [-2/1]$. How do you explain $2\vec{u} + 3\vec{v}$?



Geometric interpretation of linear combination

[1 0] and [0 1] are "special vectors" in the 2D-space. Can you guess why?

Every vector u in \mathbb{R}^2 can be represented as a linear combination of vectors $x_1 = [1 \ 0]$ and $x_2 = [0 \ 1]$, i.e.:

For every $u \in \mathbb{R}^2$, there exist a constant $c_1, c_2 \in \mathbb{R}$ such that $u = c_1x_1 + c_2x_2$.

In particular, if $u = [a_1 \ a_2]$ then $u = a_1x_1 + a_2x_2$.

Example

$$[4 \ 3] = 4[1 \ 0] + 3[0 \ 1]$$

- What are the special vectors in the 3D-space?
- What about the *n*D-space?

Geometric interpretation of linear combination

The set

$$\{x_i, i \in \{1, 2, ..., n\} \mid x_i = (0, ..., 0, 1, 0, ..., 0) \text{ 1 is at the } i\text{-th position}$$

is the set of special vectors in the *n*-space. (In the previous slide, we denote them by e_1, e_2, \ldots, e_n .)

So any vector $u = (a_1, a_2, \dots, a_n)$ can be written as:

$$u = a_1x_1 + a_2x_2 + \cdots + a_nx_n$$

We say that $\{x_1, x_2, \dots, x_n\}$ spans \mathbb{R}^n .

A more formal definition will be discussed later.

Part 4: Linear Independence of Vectors

Linear independence

Given a system:

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The system can be written as a vector equation:

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The vector equation has the trivial solution:

$$x_1 = 0, x_2 = 0, x_3 = 0$$

Is there any other solution?

Linear independence

Definition (Linear independence)

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\} \in \mathbb{R}^n$ is said to be linearly independent if the vector equation:

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \cdots + x_p\mathbf{v}_p = \mathbf{0}$$

has only the trivial solution.

Definition

The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\} \in \mathbb{R}^n$ is said to be linearly dependent if there exists $c_1, c_2, \dots, c_n \in \mathbb{R}^n$ which are not all 0, s.t.

$$c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_p\mathbf{v}_p=\mathbf{0}$$

Simply saying, two vectors are linearly independent if none of them can be expressed as a linear combination of the others.

Example of linear independence of vectors

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$.

• Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.

Solution:

Example of linear independence of vectors

Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$.

• Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.

Solution:

Solve the system:

$$x_1 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

We can perform elementary row operations on the augmented matrix:

$$\begin{bmatrix} 1 & 2 & -3 & 0 \\ 3 & 5 & 9 & 0 \\ 5 & 9 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & -1 & 18 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -3 & 0 \\ 0 & -1 & 18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

What can you conclude?

Example of linear dependence of vectors

Given
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$. We have relation:

$$-33\begin{bmatrix}1\\3\\5\end{bmatrix}+18\begin{bmatrix}2\\5\\9\end{bmatrix}+1\begin{bmatrix}-3\\9\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

or equivalently,

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} -33 \\ 18 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A\mathbf{x} = \mathbf{0}$.

Exercise 1

Determine the linear independence of the following set of vectors:

$$1. \ \{\mathbf{v}_1\} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$$

2.
$$\{\mathbf{u}_1, \mathbf{u}_2\} = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 4\\2 \end{bmatrix} \right\}$$

3.
$$\{\mathbf{v}_1, \mathbf{v}_2\} = \left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}$$

Solution:

Conclusion

How to check that a set containing one vector is linearly independent?

How to check that a set containing two vectors is linearly independent?

Conclusion

How to check that a set containing one vector is linearly independent?

Answer: $\{\mathbf v_1\}$ is linearly independent when $\mathbf v_1 \neq \mathbf 0$

How to check that a set containing two vectors is linearly independent?

Answer:

- {v₁, v₂} is <u>linearly dependent</u> if at least one vector is a multiple of the other;
- {v₁, v₂} is linearly independent if and only if neither of the vectors is a multiple of the other.

Part 5: Numerical Computations of Vectors in \mathbb{R}^n

Properties of vectors under operations

Theorem

For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and any scalars $k, k' \in \mathbb{R}$,

1.
$$(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$$
 (associative)

2.
$$\mathbf{u} + 0 = \mathbf{u}$$
 (identity elt w.r.t. addition)

3.
$$\mathbf{u} + (-\mathbf{u}) = 0$$
 (two opposite vectors)

4.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$
 (commutative)

5.
$$k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$$
 (distributive w.r.t. scalar mult.)

$$6. (k+k')\mathbf{u} = k\mathbf{u} + k'\mathbf{u}$$

7.
$$(kk')\mathbf{u} = k(k'\mathbf{u})$$

8.
$$1\mathbf{u} = \mathbf{u}$$
 (identity elt w.r.t. multiplication)

Note: Suppose \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^n , and $\mathbf{u} = k\mathbf{v}$ for some $k \in \mathbb{R}$. Then \mathbf{u} is called the multiple of \mathbf{v} . If k > 0, then \mathbf{u} and \mathbf{v} have the same direction, and if k < 0, then they are in opposite direction.

Exercise

to be continued...